
1I.uuuuuuuIuIhuI

::1059_O02

t 

MONTE CARLO STUDIES OF HOT—ELECTRON DISTRIBUTIONS
IN THIN IN SULArING FILMS : II. ENERGY DEPEN DENT
MEAN FREE PATH AND INSTABILITY

0
S. Baidyaroy, N. A. Lampert , B. Zee, and Ran~ n U. Martinelli

0
PRINCETON UNIVERSITY
Department of Electrical Engineering
Princeton , New Jersey 08540

~~~ Principal Investigator: Walter C. Johnson
Telephone : (609) 452—4621

~~~~ 15 November 1976

SPECIAL TECHNICAL REPORT NO. 1

Approved for public release; distribution unlimited.

Prepared fo r :

NIGHT VISION LABORATORY
U. S. Army Electronics Command
Fort Belvoir , Virginia 22060

Sponsored by: 0 D (~\
DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

DARPA Order No. 2182 JAN 6 p477
Program Code No. 6D10
Contract DAAG53—76—C—0059 I~~L~Effective Date: 17 November 1975
Expiration Date: 31 December 1977

The views and conclusions contained in this docui~~nt are those of the authors
and should not be interpreted as necessarily representing the official
policies, either expressed or implied , of the Defense Advanced Research
Projects Agency of the U. S. Government .

— --—— --—~~~ V-



F ~~~~~ 
•
~
‘•
~~~~~ 

V_ ~ V•_ —~ ~~~ ~~~~ V ~V ~Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (Wh .n Data fn~m~~ ____________________________________

EPORT ~~~ READ INSTRUCTIONS
_______________________________________________ — BEFORE COMPLETING FORM

I ________ CUMENT~I!O A 
~~~~~~cIPIE~~~~ ~~~~~~~~~~~~~~~~~~~~ 

3 
—

~

~~~~~~~~~~~ I. T~~~(~~J ~ E~~~D COV~~~ D

IN ~~tIN INSUL~3~INGJILM!~~~~~ . £VNERGY DEPENDENT• 
(

~~~ WNTE ~~ RLO ~3~UDIES OF ~OT-ELECTRON ~ ISTRIBUTION S ____________

• JjEAN FR~~ JATH AND INSTABILITY. s. PER~ ORMINQ ORG. R(PORT NUtAMIR— -~__________ , f~
’ ~ CONTRACt OR GRANT NUNIEWØ

ô ST~~aidyajoy, N. A/’Lampert ,
_B/Ze~ L~~~’ (/~ /Ran~ n U.ftlartinelli r- ‘

~

-

~~~ 
~~~~~~~~~~~~~~~

I. PERFORMING ORGANIZATION NAM E AND ADDRESS 
~~ ~~~~~~~ 1

T
1~J 1Th1 ~~~~~~~~~~~~~

Princeton University , Princeton , NJ 08540 ~~~ .

Principal Investigator: Walter C. Johnson 611Ol~~ARYA 2182,
Telephoii~ : (609) 452—462 1 6p.IOçO24CJ

II. CONTROLLING OFFICE NAM E AND ADDRESS 1S~ RUJ IflF 5f ~~~Defense Advanced Research Projects Agency / 15 N ~ 
— 76

1400 Wilson Boulevard 1L • - -
Arlington, Virginia 22209 2~14. MONITORING AGENCY NAME & ADDRESS(IS 4SN.,s.,t fr~~ OWe.) IS. SECURITY CL ASS. (.1 V.11 tsp M)

Night Vision Laboratory I _____ 
.
~ .s~DRSEL—NV—II 

Unc i.ass~..~a.e

Fort Belvoir, Virginia 22060 11.. f~~~~~~~~~~~~ .(ICATIONIDOVNGRADINGp. _ _ _ _ _ _ _
V V IS. DISTRISUTION STATEMENT (of V.1 . R.poel) I

Approved for public release; distribution unlimited.

17. DISTRISUTION STATEMEN T (of V.. .b.I ~act .,*Sisd I., PISck 20, II ~~tf., W 5rs R.p..f)

1$. SUPPLEMENTARY NOTES

The work reported herein is a continuation of research initiated under
ARPA Order No. 2180, u~nitored by Air Force Cambridge Research Laboratories
(LQ~ . T~is report is a preprint of ~ paper submitted to the Journal of
Afip l~~ id

IL kEY WORDS (Cw*Snu. in Av.r.. aId. SI a.e.e..y ini S*.,ff ~ . &y Al.eS ... 1.v)

Hot electrons
Hot—electron transport
High—field transport
Insulating f u m e  • 

V 
V

AS. AUTRACT (C.n*Inv. .i r.v~’.. aid. SI a..e.. ~~~~ ,d S*nW~ ’ ly Miii .. 1.. )

V ~~ ~A Monte Carlo study has been made of hot electron energy distributions in thin
insulating filnm . Whereas a constant energy—independent mean free path
results in a stable energy distribution, it is shown that an energy—dependent

~~‘ 1 * mean free path which increases with increasing energy can lead to energetic
runaway of the electrons. A graphical method has been developed to gain

V insight into this problem, and is illustrated by several prototypical examples.

V ~D ~i, 1473 EDITION OF I NOV Si IS OS$OLt?t Unclassified
S/N O1O2~O*4 SIO1 V _________________________________________

V 

~~~~~~~~ 

SCURITV CI.AUIPICA?ION OP tMI$ PASt

V ~~~ •V ~~~~ ~~~~~~~~~~~~~~~~~~ • ___~_ .V’.~ V~~ V_ ••*~ V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ V



Monte Carlo Studies of Hot—Electron Energy Distributions in Thin Insulating
Films: II. Energy—Dependent Mean Free Path a~~ Inatability*

By

S. Baidyaroy,t N. A. Lampert ,ttand B. Zee’
Department of Electrical Engineering

• Princeton University
Princeton, New Jersey 08540

V
: And

Ramon U. Martinelli
RCA Laboratories

Princeton, New Jersey 08540

ABSTRACT J
Monte Carlo calculations are used to study theoretically hot electron

• transport through a thin insulating film subjected to a high, uniform

• electric field F. A constant energy—independent mean free path A leads to

• 
• a stable, steady—state energy distribution for the electrons, character—

ized by an average steady—state energy E • E depends on A , F and• av,ss av,as
Cpb~ 

the optical phonon energy associated with scattering of the hot elec-

trons by the lattice. An energy-dependent mean free path A (E) which in-

creases with increasing electron energy can lead to energetic runaway of

either a relatively small number of electrons in the distribution (quasi—

stability, or a bi—modal distribution) or the entire distribution (in-

stability). A graphical method has been developed to gain insight into

this problem. The method rests on an analysis of the interactions of two

• 
I 

curves plotted in the E, A plane, one curve being the plot of ~~~~~ 
vi. A

where A is the mean—free—path parameter taken to be constant (energy—

independent) for each calculation of E5~ ,85~ the other curve being the

plot of the actual functional dependence of A on E, 1(E). Th. method is

illustrated by several prototypical examples r - 
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1. Introduction

• In a previous paper ,’ the authors studied theoretically, using Monte

Carlo techniques , hot-electron transport through thin insulating films in

the presence of high, applied electric fields, on the order of a megavolt

per centimeter • This study has particular relevance to contemporary solid —

state electronics , where thin insulating layer., usually on a silicon sub—

• strate, are frequently subjected to electric fields near the threshold for

• electrical breakdown. The previous paper , hereafter referred to as I,

studied transport characterized by a constant , energy—independent ecan free

• path (mfp) between collisions with the lattice. The major result found is

that the constant—mfp constraint always leads to a stable , steady—state

energy distribution no matter how anisotropic the microscopic scattering

process may be, short of pure forward scattering. Further, the average

energy of the steady—state distribution i. given by a simple scaling law,

namely, Eq. (1) of the present paper .

In the present paper we study hot-electron transport characterized by

an energy—dependent afp, namely, one which increases with increaaing

electron energy • This latter property is relevant to the electrical break-

down problem, since it favors runaway, in energy, of either a small number

of electrons2 or, in some cases, of the entire energy distribution. Both

of these situations are examined in the present paper. In particular, we

exhibit a powerful graphical technique, utilizing the previous results in

I for an energy—independent mfp, to analyze the stability of the overall

energy distribution where the af p is energy—dependent, and further to obtain

the average steady—state energy of the distribution when the distribution 
V

• :~ i. stable.
I

Vi-
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II. Outline of the Method and the Results of I

High field , hot—electron transport is studied in an amorphous film

V • .~~ of thickness d subjected to a uniform electric field F. The electron is

injected into the film at plane z 0  in a random direction and with an

initial energy E~ . Under the influence of the field it accelerates in the

positive i—direction, following a Newtonian trajectory up to the point of

V an inelastic èollision with the lattice. The length of this trajectory is

determined randomly according to the functional energy dependence of the

alp. The inelastic collision process creates an optical phonon of energy

and the scattered electron, therefore, emerges from the collision

with an amount subtracted from its energy. The new direction of motion

of the electron is chosen randomly according to the functional form of ’ the

angular scatteri ng process • We have taken the angular scattering to be de—

pendent only on the polar angle 8 with respect to the direction of travel

just prior to the collision . For simplicity , we used a (1. + cosO)—dependence

to study dominant forward scatteri ng and a (1 — cosO)-dspendence to study

dominant backward scatteri ng; isotropic scattering has no 8 — dependence .

With its post-collision energy and direc t ion specified , the electron again

follows a Newtonian t raj ectory up to its next collision with the lattice ,

and so on. In this manner , the electron ’s path throug h the film is followed

until its emergence from the film at plans z d , at which point the computer

stor es the emerging electron ener gy. Another electron is then injected at
V 

z 0  with energy l
~
, and its path is followed iii a similar manner • The

process is repeated until a representative histogram of the emerging energy

distribution is obtained . A minimu, of 200 electrons was used to obtain

the energy histograms .
a

a
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In the situation studied in I , the film thickness ra nge was on the

Qrder of one hundred to several thousand Angstroms ; E~ was generally in

the range 0.01 to 16 cv; F was of the order of 106V/ca; and 
~ph ~~~

V either 0.05 or 0.1 eV——all values appr opriate to the study of hot electron

transport in thin films of A1203 and Si02.

The major result of I is as follows: For a constant alp the distri—

bution—in-.energy for the injected electrons reaches a steady—state value,
V 

independent of the initial injection energy, for which the average steady—

V state energy, B , is given by the scaling law:av,ss

V 
Bay,55 

— k(FA) 2/cph, (1)

~: 
~

. where k is a constant determined by the details of the scattering process:
V V 

the greater the probability of forward scattering, the larger the value

• : of k. For dominant forward scattering characterized by a Cl + cosO) —

dependence, k — 1.27; for isotropic scattering, k — 0.87; for dominant

backward scattering characterized by a (1 — cosO) — dependence, k — 0.66.

A graph of k vs. an anisotropy parameter f , defined for a simple one—

dimensional random—walk simulation, is presented in Fig. 13 of I. The

‘development’ distance D, over which the electron energy distribution ex—

ponentially settles down to its steady—state is also given by a scaling

law: D—k ’ (FA 2)/eph. For a film thickness d exceeding a few D the emerging

V 
energy profile is independent of d. 

V

We found in I that , under the constraint of constant , energy—inde—

I • pendant alp, any degree of forward scattering , short of exact forward

scattering , leads to a finite , stable , steady—state energy distribution .

.

~~ 

Physically , this is understood as follows : For a given degree of forward

a scatteri ng, particles with energies less then are quickly directed along
the positive s—dire ction by the appl ied field , F. This tendency to travel V

_ • ________
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with the field implies that particles with energies less than B are
- V av,ss

warmed up by the field • On the other hand , particles with energies greater

than B are not significantly influenced by F and travel in nearlyav,as
rectilinear trajectories . So long as there exists some chance that an

energetic particle be back—scattered along the negative i—direction , such

a back—scattered particle will ~ontinue traveling backwards , losing energy

I 
as it travels , against the field. In the case of strong forward scattering,

V this backward travel is sustained, for the particle is now most likely to

V 
continue being scattered along its present course, which is the negative

i—direction. This cooling effect continues until the particle is turned

around by the field , or by angular scattering, into the positive . z—direction
V Thus , an energetic balance is struck between the warming of low~energyV

electrons by the field and the cooling of energetic electrons by back—

scattering into trajectories directed against the field. This balance

produces a finite, steady—state distribution.

III , Energy—Dependent Mean Free Path; Unstable Energy Distributions and

Runaway Electrons

If the alp is energy—dependent, A — A (E) , and, further , if A(E) in—

V creases with increasing energy, the argument on stability presented at the

V 
end of Section II breaks down. The hotter a hot electron gets, moving,

V 

roughly, ‘with’ the field, the less likely it is to make any collision

with the lattice. Further , even if it does make a large—angle scattering ,

turning it into a trajectory ‘against ’ the field , as it subsequently under—

goes cooling, the probability of its making another large—angle collision

which will return it to a motion ‘~~j~h~ the field keeps increasing . The

I net effect favors higher energies for the electrons . Whether the dynamic

interplay of these effects leads to full stability , as in I , or to total a
IV -
I V

V _  __
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instability of the distribution, with almost all electrons increasing

their energy indefinitely with increasing film thickness, or to a quasi—

stability with most electrons settling down within a finite steady—state

• 
distribution and a few running away in energy is the main subject of

this paper.

V 

We have studied the problem of stability, quasi—stability and in-

stability using a graphical. technique in combination with the results

previously obtained in I. The quantities that are plotted graphically

are E vs. A as given by (1) , where B is identified with Bay ,55 
calculated

V as if A were constant , and A — A (B) , the given functional dependence of

A on E. tIn plotting the constant alp scaling law (1) , the quantities F

and £ph must be specified , and the numerical value of k depends on the

detailed form of the angular scattering law.) The properties of stability,

quasi—stability and instability are analyzed in terms of the intersections

of the two quantities plotted . Two simple functional forms of energy de-

pendence of the alp were chosen to Illustrate the technique: A — A0 +

a (E/ cph)
~~

2 and A — A0 + ~(B/ePh) , where A0, a and ~ are adjustable con-

stants with the dimension of length.

A. Square—root dependence of, A on E j
Here we take the functional dependence of , A (E) as

A — A
0 

+ a(B/cph)~
l2
. (2)

In Fig. 1, Eqs . (1) and (2) are plotted in the B—A plane. Equation

(1) is a parabola in E vs.~ A , here plotted for two different values for

~
ph’ namely 0.1 and 0.05 cv, and labelled I and II , respectively . In V

V each case there is one, and only one, intersection between the A(B)

parabola (2) and the scaling—law parabola (1) , given analytically by the

-

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ V .  —- - ‘ . V - ~V .

~~~~~~~~~ V
.Va~~~ . . t , Vr.q  ~~VV V~ V V V V _VVV ~V~
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V 

(FA )2 i/z —2 1/2 —l

Eav,ss~~ k tph [ e Ph] 
A — A 0 
[

1_ ak
€

F 

]

Coinciding with, or extremely close to , these points of intersection (3)

V in Fig . 1 are large, open circles . These circles represent direct,

independent Monte—Carlo calculations of 
~ay ,ss for the identical , corres—

ponding problem. Thus , a single intersection of A (E) and

establishes the stability of the distribution and also yields the average

energy . Note that , as with the A — constant case of I , there is not a

single ‘runaway’ electron. That the distribution settles down into a

steady state, independent of film thickness, Is seen in Fig . 2 for four

different cases , labelled I through IV. For c ’~~ I the independence of

Bay ,ss f rom the initial energy B0 is also explicitly exhibited.

Note that in the E—A plane of Fig . 1 the constant alp situation is

simply the vertical line: A — constant. In effect , the square—root dc-

pendence of A on B, given by (2) , is just too weak a dependence to give

a result qualitatively different from the A — constant case of I.

That a single intersection of the scaling—law (1) and the A — A (B)

curve establishes a stable distribution and simultaneously gives B

ia undoubtedly true under more general circumstances than studied :bo:: .

In order to explore this , we studied a model problem in which the angular

scattering is also energy—dependent , namely , one corresponding to polar—

optical phonon scattering as given by Eqs. (20)—(23) of I, but with the

VV •~~ 
mean free path having the weak energy—dependence (2) . The graphical

solution exhibited in Fig. 3 for two ACE) cases again yields a single

point of intersection for each case , Note that for polar—optical phonon
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the alp is a function of energy . Curves I and II are Eav,ss
k (FA) 2/eph with Cph — 0.1 and 0.05 , respectively. F — 106 

~~~~~~j and k — 0.87 (isotropic scattering) . Curves A through B are
1/2

plots of A — A0 + a (E/Eph) . (A) A0 — 25 a — 2 ~~;

(B) A 0 — 4 O L a — l ~~ ; (C) A 4 O L c , — 2 X; (D) A0 — 4 0 L

a — 4 2; (E) A0 — 50 2, q — 22. The open circles represent

:~ 
• Bay 5$ computed through a Monte Carlo simulation using the

parameters for scattering and for A(E) given by the two curves

that intersect at Ba •
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• I Fig. 2: The development of E with film thickness, d, for A — A + —
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av, s 0

a (E/€ pb) , using some of the parameters of the curves in

Figure 1. F — 106 V/cm and k — 0.87 for all the curves .

I (a) : . AO
..
~ 2 5 L a ~~~2 2 ~~c

Ph
_ O.l eV , and E O

_ o.ol ev; .

I (b) : same as 1(a) , except B0 — 10 cv; II: A0 — 25 2,
a .’2LC Ph O.O5 eV, E0 0.Ol eV; III: A0 — 40 2,a — 1 2 ,

cPh O.05 eV, d E O O.Ol eV. IV. A0 — 4 O L c x — 2 2 ,

Cph — 0.05 eV, and B0 — 0 • 01 eV. 
V

L
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when Eav ,ss — k (FA) 8/3 /c
ph

5/3

and ACE) — A0 + a(E/c Ph) h/ 2 . k — 1.64 , ~~
‘ — io6 V/cm , and

Eph — 0.1 eV. The form of Eav ,ss i s generated using the polar—

V 

. 

optical phonon scattering formula .
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scattering, Eav es — 1.64 (FA) 8/3
~ph~

5/3 . The Mont e—Carlo computation
V 

for 
~av,as yields, for each case, the steady—state energy represented

by the heavy dot. It is seen that the agreement is excellent.
I

Qualitatively different, and more interesting, possibilities de—

ye lop if the functional dependence of A on E is stronger . This is

illustrated by the next case .

B. Linear dependence Of A on E

Here we take the functional dependence of A on E as

V 
A — A0+ 8 (E/cph).

The graphical method consists of simultaneously plotting Eqs. (1) and

(4),  as in Fig. 4. It is seen from this figure that there may not be

any intersections of the two equations, or there may be two inter—

aections Also there may be a unique, single intersection which is

really a degeneracy, or coincidence of the two intersections. Alge-

braically, these situations are represented as follows:

V Single (degenerate) intersection: 8 — — A
0 

[

~~~~~~

]

2 
(5)

(PA )2 A e
A — 2A , E — 4k 

‘ 
° -~ — o ph , (6)

V cr V o cr c 8ph cr V

where (Acr e 
~cr~ 

are the co—ordinates of the’single intersection. , V

No intersection: — 
~~~~~~

— > 1 . (7)

Two intersections: — 
~~~~~~~~~ 

< 1 . (8)

I
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- Fig. 4. Display of points of intersection between B — 0.87 (FA) 2

/e 
~

t . and A — A0 + 8 (El 
~pb~’ where F — 106 V/cm and Cph 0.05 eV •

Note that for some values of A~ and B there are no intersections ,

which implies a runaway condition.
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~ (9)

where (A+, B+), (A , E_) are the co—ordinates of the two intersections.

- In Fig . 4 the parameter values are F — 1o6 V/cm, £ph — 0.1 eV and

k — 0.87. For A0 — 25 2, Eq. (5) gives 8cr — 1.15 2 for the single
— V intersection point. Thus, for B > 1.15 2 there are no intersections

V and for B < 1.15 2 there are two intersections. Indeed, it is seen that

for B — 2 and 1.2 2 there are no intersections, and for B — 1.0, 0.8 and
V 0.5 2 there are two intersections in each case. For A~, — 40 2, Eq. (5)

gives 8cr — 0.72 2 for the single intersection point.

The behavior of the energy distribution with film thickness d is V

I studied in Fig. 5 for the case that E0 is very small (B0 << E < B for

any B) . Note , from (9) , that for B + 0 , hence y + 0, A + Acr/2 —
‘ 

A
0 and

B + 0.25 Ecr • Since 8cr — 1.1.5 2, the chosen values of ~ straddle

For B — 2.0 2 and B — 1.2 2 there are no intersections, and for B — 1.0,

V 0.9, 0.8, and 0.5 2 there are two intersections apiece, which separate
V in energy as B gets smaller. Clearly, the no—intersection cases, B — 2.0

and B — 1.2 2, correspond to runaway of the entire distribution, exhibited

by a smooth, rapid increase of E~y with d. What is striking about Fig . 5 V

is the demonstration that even with two intersections the distribution V -
V

appears to be running away, namely, for B — 1.0 2, albeit not quite as

j smoothly as for B > 8cr~ 
As B gets smaller , so that E+/B_ gets larger

(see Table I) the mean energy tenda more to ‘settle down’, though it may

still increase slowly, as is seen comparing the B — 1.0, 0.9 , and 0.8 2
curves in Fig . 5. Thus , the B — 0.8 2 curve is quantitatively quite

different from th. complete run—away curves, B — 2.0 and 1.2 2. The

I :  V

I

I V
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B 0.9 and 0.8 2 curves are readily interpreted in terms of the runaway,

in energy, of a small numbers of electrons,2 the remainder of the din—
V tribution behaving quits stably , as illustrated in the histogram of

V 
Fig. G. Effectively, we have in these situations a bi—modal distribution,

V one containing most of the electrons being stable, and the other consis— 
V

ting of an unstable energy tail . The few electrons in the tail are those

that managed to get past E
~
. Once an electron is well past E+ the like -

V 
lihood of its ever returning below E+ becomes vanishingly small — that is,

a true runaway has occurred. However , as B gets smaller , E+/E gets

very large, as seen in Table I. It then becomes increasingly unlikely

that any electron will get up to E
+ starting from B0 near 0. Thus, for

B — 0.5 2 in Fig. 5 not a single electron ‘escaped’ from the distribution,

past E+ 17 Ecr 37 eV, and hence the distribution appears to Vbe ‘totally

stable,’ i.e., Bay is quite flat with increasing d. It should be pointed

out , however, that although this ‘total stability ’ may be ‘practically’ 
-

~

true, it cannot be rigorously true . For a fixed , small B, if a large -

enough number of electrons are tested , i.e., if the batch number N is V

taken large enough, there will always be a few electrons that will run I

away in energy. This was simply not seen for B — 0.5 2 in Fig . 5 because

N — 200 was apparently not large enough . Even a single electron running

away for f ixed N will prevent Bay from being completely flat with increasing ’ I
4, asseen in t h e B — 0 . 8 a n d O . 9 2 curves. The case B l . O2 i n Fig . 5 V

V is a transition case, in which E
~ 

is close enough to B that large numbers 1

of electrons are running away in energy. (Prom Table I, B+
.1 2.6 Ecr

57 •V and E_ 0.53 E0~ 
1.2 eV). Clearly, as B increases from 1.0 2,

through B~~ — 1.15, to 1.2 £, th, corresponding 
~av vs. d plot, change

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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V TABLE X

____ ~~~cr ~ij )hcr B / K  A / A  E / E cr E+/E

0.5 0.43 4.1 17.0 0.57 0.33 51
V 0.8 0.70 2.2 4.8 0.65 0.42 11.4
V 0.9 078 1.9 3.6 0.68 0.46 7.8

1.0 0.87 1.6 2.6 0.74 0.55 4.7
1.2 1.04 — — — —— — ——— — ——
2.0 1.74 — ——  — - —  —— —  - — —

~cr — 1.15 2, Xcr 50 2, Ecr 2 2  eV
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V smoothly. In this smooth transition regime, a subst natial fraction of the

total number of injected electrons runs away in energy.

From the arguments presented above it is apparent that whether or not cisc—

V trona are likely to run away in energy can depend strongly on E0, their energy

V at injection. This is seen strikingly in Fig. 7, in which Kay is plotted

vs. d for F lO6V/cm, Eph ~ 0.1 eV, k — 0.87 and A0 — 40 2. There are

four curves: B0 — 0.01 eV and B — 0.5 and 1.0 1, respectively; E0 10 eV

and B — 0.5 and 1.0 2, respectively. Note that 8cr 0.72 & and Ect
5.63 eV for the degenerate , single intersection point . Since B 1.0 1 > Bcr~
the two B — 1 2 curves completely run away, as expected. On the other hand,

V 

E+/E_ is so large for B — 0.5 1, and E
~ — 0.01 eV that not a single electron

in the batch of 200 runs away, and the average energy saturates with increas—

V ing film thickness , as with the 8 0.5 1 curve of Pig. 5. The more inter—
V 

esting situations are those for which E0 — 10 eV and 8 < 8cr~ 
Thus, for

8 — 0.5 2, y — B/Bcr 0.693 so that 1+ — 28 eV and K 2.34 eV. Although

E0 — 10 eV is a fair amount smaller than E+, it is close enough that a few

electrons are able to get past B+ and run away, while all the others settle

down to a much lower average energy near E_. Note that the 8 0.5 2 curve

first ‘cools down’ and then rises more slowly. The cooling—down phase is

dominated by the main part of the distribution , which is settli ng down V

towards 1 2.34 eV from the high injection energy, 1~ 10 eV. The effect

I of the fsw electrons that are already running away ii buried under thi s

bulk cooling effect . However , once the bulk og the distribution has settled

down, in about 5000 2, the runaway electrons manifest th selves in a slow,

steady increa se in 15~, as ssen in Pig . 7 and in Pi8. 5, for the curves V

labelled 8 • 0.8 and 0.9 &. If were lar ger , correspondingly more electron.

would run away . For 1
~ 

>> 1+ tb. entire distribution would run ~iay. On

Vt V

Ft 
_ _  __L~. __ __
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V the other hand, 8 — 1.0 1 corresponds to y > 1 and there are no inter—

V 
sections of the E,~~.. (A) and ACE) curves . In this case runaway of the *

entire distribution is expected, independent of K0.

The existence of bi—modal distributions leads to the notion of local

stability around a point of intersection between the A(E) and B (A)av,ss
curves. If the slope of A(E) is greater than that of E (A) at theav,ss

V 

point of intersection, B1 the distribution is stable about this point

in the following sense: An electron having energy slightly greater than

Ei has a af p that is shorter than the one given by B (A) evaluatedav,ss
at that particular electron energy . Therefore, the electron tends to

cool down toward Ei, where the nip is that given by E5~~.5
(A) evaluated

V 

at E~ . Conversely, an electron with energy less than Ei has a afp longer

than that given by Eav ss (A ) ,  and it tends to warm up to the point where

its nip is equal to that given by Ee v s s~ namely, Ei. Hence, Bi is a

stable point in energy where electrons with energies differing slightly

V f rom Ei tend to evolve toward B1. Note that A — constant is a special
V case where the slope of A(E) is infinite. (We consider negative slopes

of A (E) to be even larger).

V When the slope of , A(E) is less than that of Bay ,ss (A) at E~ , insta-

bility results. An electron having an energy slightly above E1 has a

nip which is greater than that given by Bay,ss (A) evaluated at the

V 
V 

electron energy. The electron, therefore, tends to warm up to the energy

1 ss V (A) corresponding to its afp . As it does so, its nip increases

still further, leading to a runaway in energy • For an electron energy

below E~, the afp is less than that given by E5,55 (A) evaluated at

V 
the electron ’s energy , so that the electron tends to cool down toward an

energy below where A (B) — 1 se (A) . In the specific case whereav,

‘4

I
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V A — A0 + B (II
~ph) and 1ev,is V (~~~

) — k ~~~
) 2/cph. electrons with energies

• less than 1+ tend to cool down toward E. If, by chance, an electron’s

energy rises above 1+, runaway is strongly favored . Thus, bi—modal dis—
L VV 

tributiona arise, with most of the electrons near the lower point of inter— 
V

section, E , and with a few, having escaped beyond B+, running away .

While the notion of local stability gives a qualitative feeling for

the generation of bi odal distributions, their detailed shape, in energy, V

strongly depends on the relative slopes of the curves and the proximity

of the points of intersection.

IV. Conclusions

The conclusions that follow from I and from the present paper are 
V

as follows:

V a) For a constant nip, . A , any degree of forward scattering , short

of pure forward scattering, results in a stable, steady—state energy

distribution. For an energy—dependent alp, A—A (E), our results are most

conveniently expressed graphically in the B (ordinate), A (abscissa)

plane in terms of the intersections of the two curves E — E (A)av,ss A con~t
and~~~— A(E) .

b) If there is a single intersection point (which is not a degeneracy),

then a stable distribution results, with 1av,ss given by the B co—ordinate

of the intersection point .

c) If there are no intersection points the distribution runs away

V in energy.

d) If there are two intersection points the distribution is, at best ,
V V 

quasi—stable. That Is, if the two intersection point s are far enough apart C

i

V V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~±
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in energy, 1+ >> 1 , and B0 <‘c E+, the bulk of the distribution will V

• be stable, but there may be a few runaway electrons . The closer B4, gets

to E+ the more runaway electrons there will be. In limiting cases , with

both E <<< E÷ and E~ <<< E+ the distribution may be stable, practically

speaking; that is, the fraction of the total number of particles running 
I

V 

away may be too ainiscule to have any experimental significance.

e) More generally, an intersection point at which ~a—A(E) has the 
V

steeper slope (A — constant has infinite slope; negative slope is to be

considered even steeper] promotes local stability in its vicinity. Con— V

V versely , an intersection point at which Eav,ss (A) has the steeper slope

promotes local runaway in its vicinity. However, the proximity of the two

V intersection points is also significant in determining the entire distribution.

Finally, we should like to 8treSs that virtually all of our studies

have been based on relatively simple forms of angular scattering. We are V

V simply not able to say whether more complicated scattering processes can V

lead to additional interesting results.
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